

La filière hydrogène

L'hydrogène, vecteur énergétique du futur?

E. Marty
Chef de projet
«Procédés de Conversion de la Biomasse »
Institut Français du Pétrole - Solaize
eric.marty@ifp.fr

Hydrogène, vecteur énergétique du futur?

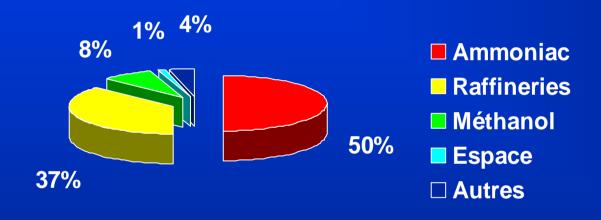
- Introduction
- Production & Purification
 - H2 ex-combustibles fossiles
 - H2 ex-renouvelables
 - Procédés de purification
- Distribution & Stockage
- Utilisation
 - Eléments économiques
 - Analyse des filières
- Conclusions

Environnement et ressources énergétiques Deux préoccupations majeures

- Constat : réchauffement climatique et consommation énergétique
 - Augmentation de la concentration en GES dans l'atmosphère
 - » de 370 ppm CO₂ en 2000 à 550 ppm en 2050 ?
 - Augmentation de la température moyenne de la planète
 - » + 0,5°C au XXème siècle; + 1,5 à 4,5 °C au XXIème siècle?
 - Niveau des réserves mondiales de combustibles fossiles
 - Croissance de la consommation énergétique mondiale
 - » facteur 2,1 à 2,8 selon scénario en 2050
- Enjeux : quel(s) vecteur(s) énergétique(s) pour le XXIème siècle ?
 - Electricité
 - Hydrocarbure issu de la biomasse (alcool...)
 - Hydrocarbure sans carbone : I 'hydrogène

Pour résoudre les problèmes environnementaux, H2 sera-t-il demain un vecteur énergétique ?

Introduction: l'hydrogène H₂


- L'élément le plus abondant de la planète
- La molécule gazeuse la plus énergétique
 - 120 MJ/kg (≈ 50 MJ/kg pour le gaz naturel)
- Le gaz le plus léger (grande vitesse de diffusion)
- Un gaz ni polluant ni toxique dont la combustion ne génère que de l'eau

mais:

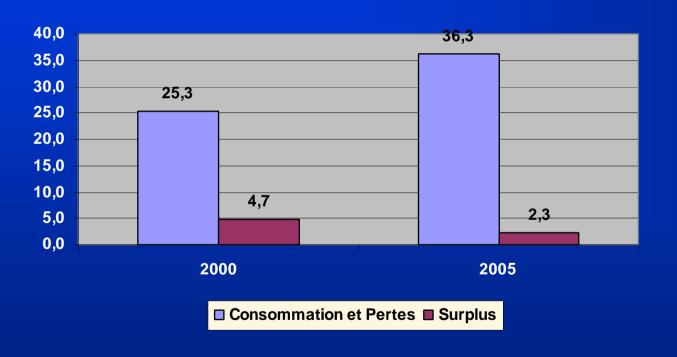
- Une densité énergétique volumique faible
- Des limites d'inflammabilité dans l'air large
 - 4-75 % vol. contre 2,1 à 9,5 % vol. (propane)
- Une énergie minimale d'inflammation faible
 - 0,02 mJ contre 0,26 mJ (propane)
- Une mauvaise image : gaz dangereux

Introduction: les usages de l'hydrogène aujourd'hui

Consommation

- Europe : 65 milliards Nm3/an
- Monde : 500 milliards Nm3/an
- Production
 - 95 % par vaporeformage du GN
 - 4 % par électrolyse de l'eau

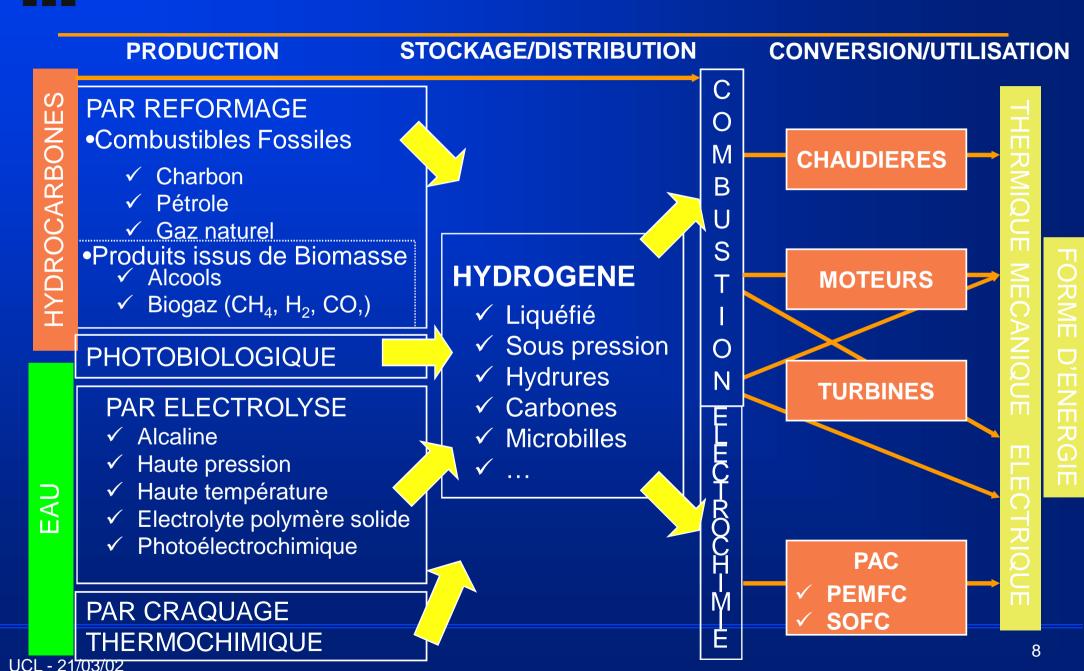
H2 aujourd'hui gaz industriel sera-t-il demain un vecteur énergétique ?


Besoins et sources d'hydrogène en raffinerie

- Amélioration de la qualité des produits & augmentation de la part des produits légers
- Unités consommatrices
 - Hydrotraitement
 (Essences et Distillats moyens ; DSV ; RSV)
 - Hydrocraquage
 - Isomérisation
- Unités productrices
 - Reformage catalytique
 - Reformage à la vapeur (GN, naphta)
 - Oxydation partielle (POX)
 - Vapocraquage (voire Coker et FCC)
 - Imports/exports

Hydrogène : les besoins de la raffinerie

Amélioration de la qualité des produits & augmentation de la part des produits légers


Balance H2 du raffinage en Europe :

30,0 GNm3 (2,7 Mt/an) en 2000 38,6 GNm3 (3,5 Mt/an) en 2005

La raffinerie (via le POX) pourrait devenir un producteur d'hydrogène

Introduction: les filières énergétiques de l'hydrogène

Production d'hydrogène Deux voies majeures : hydrocarbures et électricité

Énergie fossile

Production de gaz de synthèse
Vaporeformage
Oxydation partielle
Autotherme

Shift Sé Sé PS Mé Me

Purification/
Séparation

PSA

Méthanation

Membrane

Cryogénie

Source d'énergie primaire

Électricité

Électrolyse

H2

Production d'hydrogène : les charges

		C (%pds)	H (%pds)	S (%pds)	N (%pds)	O (%pds)	Cendres (%pds)	PCI (MJ/kg)	H2 (kg/100kg)
Во	ois	49,5	6	-	0,5	43	1	18,4	17
Pé bri	trole ut	84 à 87	11 à 14	0,05 à 6	0,1 à 1,5	0,1 à 0,5		41,9	42
FO n°2	ТВТЅ	87	11,3	1	0,24	0,4		40,6	40
0	M	28,8	4,4	0,2	0,7	18,2	47,7	12,8	12
Ch	arbon	73	4,1	0,8	1,8	9,4	11,2	28,4	27

- Schéma réactionnel
- Etapes nécessaires pour arriver à l'hydrogène
- Matières premières (charges) utilisées
- Procédés/technologies mis en jeux
- Avantages/Inconvénients POX/ Vaporéformage

Schéma Réactionnel (très) simplifié

- formation du gaz de synthèse
- **shift conversion**
- purification

```
\sim 1/ C_nH_m ----- C + CH_4 + H_2 + C_{n-2}H_{m-6}
```

$$\sim 2/$$
 C+H₂O ····· CO + H₂

$$\sim 3/$$
 CH4+H₂O ····· CO + 3H₂

$$\sim 4/$$
 CO+H₂O \longrightarrow CO₂ + H₂

- Etapes nécessaires pour arriver à l'hydrogène
 - Le passage des hydrocarbures au gaz de synthèse est globalement endothermique
 - > Le passage du gaz de synthèse à l'hydrogène est exothermique
 - > Les réactions sont équilibrées
 - > Il faut donc 2 étapes séparées :
 - > 1 étape de conversion de la charge (température la + haute possible)
 - > 1 étape de passage à l'hydrogène (température la + basse possible)

- Procédés/technologies mis en jeu
 - **Etape de production du gaz de synthèse :**
 - 1/ Steam reforming (vaporéformage)

Le gaz de synthèse est produit à l'intérieur de tubes remplis de catalyseur et réchauffés extérieurement par des brûleurs (technologie four tubulaire à radiation)

Steam reforming : conditions opératoires types

- température : 750 à 850 °C

- pression: 30-40 bars max

- H₂O/C mini : 2.5

- catalyseur à base de nickel (déposé sur alumine)

- pas de soufre dans la charge

Steam reforming : charges

- du gaz naturel au naphta (désulfurés)
- pas de composés insaturés dans la charge (contraintes de bouchage du lit catalytique)

- Procédés/technologies mis en jeu
 - **Etape de production du gaz de synthèse :**
 - 2/ POX & ATR (autotherme)

Le gaz de synthèse est produit dans un réacteur. La chaleur nécessaire est apportée par combustion d'une partie de la charge (1/3)

- Utilisation d'oxygène
- POX : réacteurs d'oxydation partielle (non catalytiques)
- ATR : réacteurs autothermes (catalytiques)

- Oxydation partielle : conditions opératoires types
 - température : 1300 à 2000°C
 - pression : potentiellement jusqu 'à 100 bars
 - H₂O/C : de l'ordre de 0.2 (et moins)
- Oxydation partielle : charges
 - Tout type de charge : du gaz naturel au résidu
 - Le soufre de la charge se transforme en H₂S (attention aux procédés catalytiques en aval)
 - Le procédé produit des suies même avec les charges légères

- Autotherme : conditions opératoires types
 - Température : 900 à 1000 °C
 - Pression : idem oxydation partielle
 - H₂O/C : mini 0.6 (contraintes liées au lit catalytique : suies)
- **Autotherme: type de charges**
 - idem steam reforming (catalyseur à base de Ni)

Steam reforming : avantages par rapport à la POX

- Maintenance plus facile que la POX
- Pas de liquéfaction d'air
- Problèmes de sécurité moins aigus que sur la POX
- Investissements moins élevés par rapport à la POX (rapport 1 à 2 sur l'ensemble de la chaîne H2)

Steam reforming : inconvénients par rapport à la POX

- Taux de vapeur plus importants que la POX (contraintes de bouchage du lit catalytique)
- Limitation aux charges légères désulfurées (catalyseurs)
- Limitation de la pression (métallurgie des tubes)
- Prix des charges

Production d'H₂ à partir de charges non fossiles

- Introduction/contexte
- Panorama des technologies possibles
 - Vaporéformage des alcools (méthanol et éthanol)
 - Électrolyse de l'eau
 - Craquage thermique de l'eau
 - Procédés biologiques
 - Pyrolyse/gazéification de la biomasse

–

Production d'H₂ à partir de charges non fossiles

- L'hydrogène n'est pas un composé présent dans la nature et doit donc être produit et purifié. Pour produire H₂, il faut :
 - » une source d'hydrogène
 - » une source d'énergie
- Pourquoi avoir recours à des charges non fossiles ?
 - » Plus de 95 % de l'H₂ est produit à partir de charges fossiles (reformage du GN).
 - » H₂ « fuel propre » que si sources d'hydrogène et/ou d'énergie le sont.
- L'utilisation d'H₂ hors utilité est pilotée par des considérations environnementales : la totalité de la chaîne hydrogène doit donc être performante vs environnement (méthodologie ACV).
- Développement d'une filière hydrogène sans GES, surtout dans un contexte d'utilisation comme carburant pour PAC.

Production d'H₂ par reformage du Méthanol

Principe:

 $CH_3OH + n H_2O \longrightarrow CO, CO_2, H_2O, H_2$

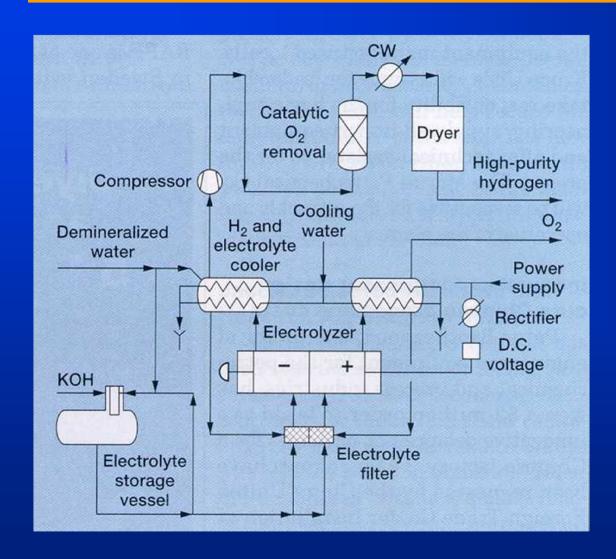
Caractéristiques principales

- Température opératoire : 250 à 300°C.
- Pression: 10 à 25 bars.
- Réaction catalysée par cata. Cu/Zn.
- Développement pour le reformage embarqué afin de fournir in-situ de l'H₂ pour PAC : applications transport.
- ↓ Concurrencé par l'utilisation directe du MeOH comme combustible des PAC.
- **▼** Toxicité du méthanol
- **♥** Bilan CO₂ de la filière

Production d'H₂ par électrolyse de l'eau

Principe:

$$H_2O$$
 \rightarrow 1/2 $O_2 + H_2$


Caractéristiques principales :

- Electrolyse en milieu aqueux alcalin ou acide.
- Production de 4 % de l 'H₂ mondial.
- Si électricité ex-ENR, H₂ renouvelable.
- Rendement énergétique mauvais et coût H₂ très élevé.
- Production d'H₂ pratiquement pur; Coproduction d'O₂ gazeux.
- Permet d'adapter la production à la demande; pas de stockage.

VIntéressant pour production de petites quantités H₂ pur

Production d'H₂ par électrolyse de l'eau

Purification:

- deOxo catalytique
- séchage

Conso. Énergétique :

Hydraulique: 35,3 MJ/Nm³ Nucléaire: 85,7 MJ/Nm³ Solaire: 214 MJ/Nm³

2,6 kg CO₂/Nm³ H₂ (moyen)

Coût de production très élevé, dépendant des tarifs électriques

Effet d'échelle très faible

Production d'H₂ par électrolyse de l'eau

Principaux développements :

- Electrolyse haute température de vapeur
 - Tréac. 1000°C
 - Développement de matériaux conducteurs ioniques adaptés (céramiques, oxydes métalliques poreux...).
- Développement d'électrolyseur personnel pour PAC embarqué ou résidentiel
- Projet en développement (nucléaire)
 - Electrolyse de l'eau en période creuse et stockage H₂

Production d'H2 par craquage thermique de l'eau

Principe:

Chaleur
$$H_2O \longrightarrow 1/2 O_2 + H_2$$

Caractéristiques principales :

- Eau source d'hydrogène.
- Diverses sources de chaleur possibles :
 - Apport thermique à 900°C; réacteur nucléaire HTR haute température en développement/évaluation.
 - Arc plasma, laser, rayonnement haute énergie...
 - » Températures très élevées; quench rapide.
 - » conversion faible et rendementt énergétique médiocre.
- **♦** Aucune application industrielle envisagée à moyen terme

Procédés de production biologique d'H₂

Principe:

- Procédés qui ont en commun une étape faisant intervenir des organismes vivants
 - Production de matière première pour production d'hydrogène
 - » production de CH₄ par fermentation anaérobie puis SMR
 - » Production d'alcools par fermentation alcoolique puis reformage
 - Production directe à partir d'eau et de lumière: photosynthèse orientée hydrogène.
 - Production directe à partir d'un substrat organique: fermentation orientée hydrogène.

Production biologique d'H₂

Production à partir d'eau et de lumière: photosynthèse orientée H2

- Processus électrochimique cellulaire en plusieurs étapes :
 - première étape : production d'O₂
 - seconde étape : transport d'électrons (ferrédoxines)
 - troisième étape : production d 'H₂ (hydrogénases)
 - » Pb : I 'O₂ est un inhibiteur puissant des hydrogénases
- Cyanobactéries
- Systèmes photosynthétiques reconstitués
- Microalgues : Chlamydomonas

→ Essentiellement recherche fondamentale dans le domaine

Production d'H₂ par conversion thermochimique de la biomasse

Deux voies principales sont étudiées actuellement :

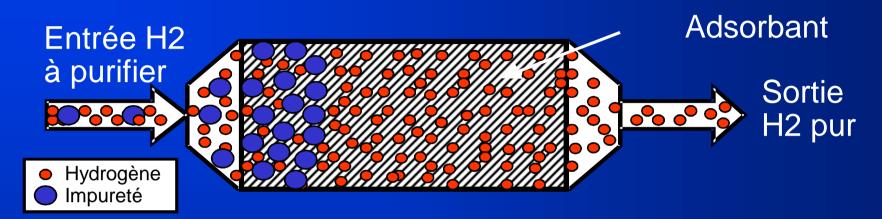
- Gazéification sous pression ou atmosphérique pour produire du gaz de synthèse.
 - T = 850°C/milieu fluidisé
 - chauffage indirect ou direct
 - oxydant : air/vapeur/O2
- Pyrolyse flash et steam-reforming des huiles produites
 - T=500-600°C/milieu transporté fluidisé à l'azote
 - steam-reforming à 750°C : cata. commercial au Ni
 - cokage très rapide du catalyseur
 - ↑ Voies prometteuses en développement (IFP)

Purification d'hydrogène : techniques physiques

- Impuretés : CO, N₂, CH₄, Ar, CO₂, H₂S
- Techniques de purification

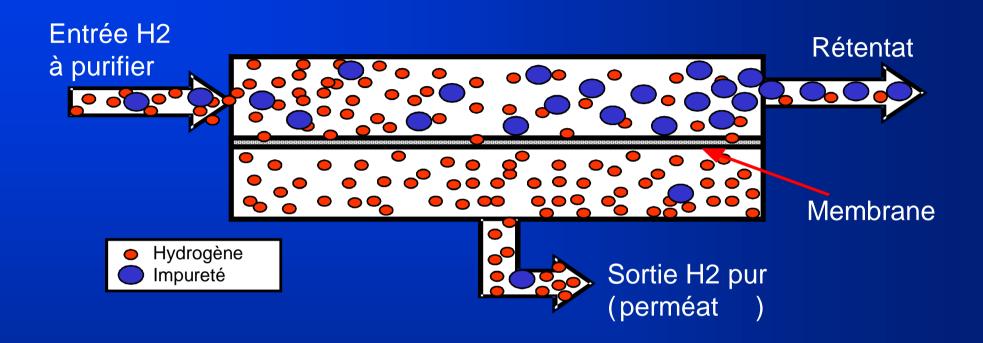
C aractéristique spécifique de l'hydrogène	Technique de purification
T ° ébul. = -249,4° C	C ry o g è n i e
Faibles interactions avec adsorbants courants	A d s o r p t i o n
Petite molécule, diffusion rapide (matériaux, t°)	M em branes

• Spécificités CO₂, H₂S → absorption & « Scavengers »


Purification d'hydrogène par cryogénie

Gaz	T° ébullition ° C
Hydrogène	- 249,4
Azote	- 195,8
СО	- 191,5
Argon	- 185,9
Méthane	- 161,5

- Techniques: condensation, distillation, absorption
- Caractéristiques principales
 - Prétraitement
 - Pureté H₂ → 98-99 %
 - Couplage possible avec PSA
 - Rendement élevé
 - Grosses capacités, high-tech


Purification d'hydrogène par adsorption

- PSA (Pressure Swing Adsorption)
 - Adsorbants : charbon actif, zéolithe, gel de silice, ...
 - Pureté H₂ → 99,9999 % & Rendement H₂: 70-90 %
 - Cycles courts (3 ' à 10 ')
 - 3 à 12 adsorbeurs
 - Sensibilité aux « poisons »
 - Capacités: 100 100.000 m3/h
- TSA (Température Swing Adsorption)
 - Elimination de faibles quantités (<< 1 %)
 - Cycles longs (> 8 h)

Purification d'hydrogène par membranes

- Technique : perméation gazeuse
- Caractéristiques principales
 - Modulaire
 - Capacité = nombre de modules
 - Rendement H₂: 1 étage de séparation → « bulk removal »
 - Pureté H₂: fonction du type de membrane

Purification d'hydrogène par membranes (suite)

Membranes

- * Polymères (applications industrielles)
 - P→15 MPa, T→100° C
 - Modules compacts→10.000 m²/m³
 - Pureté H₂→Sélectivité
- * Métalliques (industrialisation en cours)
 - Pd Ag; T → 400° C
 - Pureté H₂ → 100 %
 - Sensible aux poisons : H₂S...
 - Coût élevé (Pd ≅ Au)
- * Autres (en développement)
 - Céramiques, Céramique/métal, Zéolithe...

Distribution et Stockage de l'hydrogène

- Transport de l'hydrogène
 - sous pression par pipe (20 à 100 bars)
 - liquéfié (transport cryogénique)
 - fabrication in-situ
- Stockage de l'hydrogène
 - Stockage massif
 - » cavités naturelles ou artificielles
 - » sous forme d'alcool (MeOH)
 - Stockage de faible quantité
 - » pressurisé (350 à 700 bars)
 - » liquéfié
 - » hydrures métalliques
 - » nanostructures de carbone

Production d'hydrogène: éléments économiques

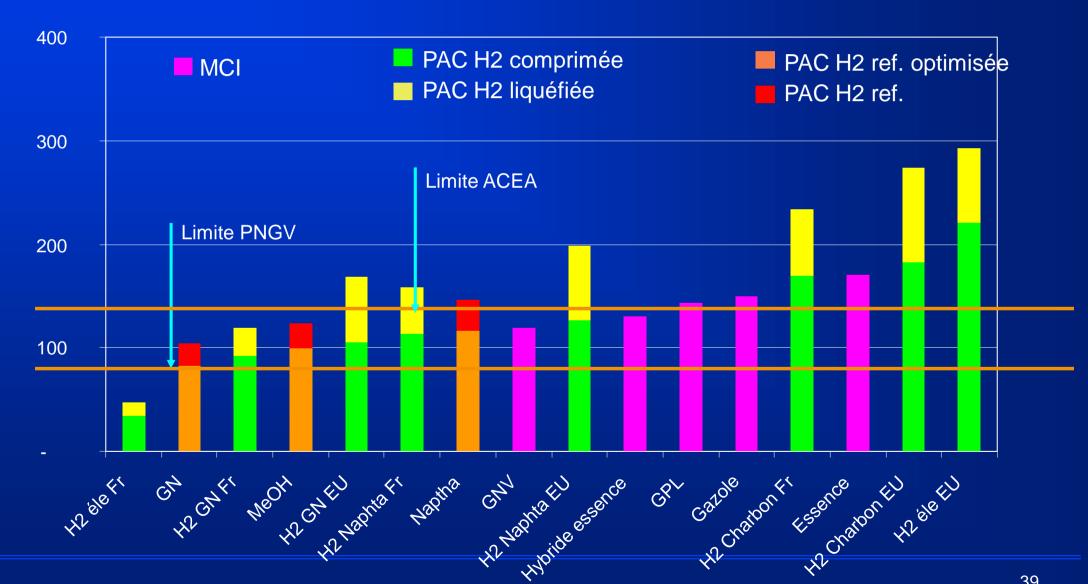
Source primaire d'énergie	Coût de l'H2 (\$/GJ)	Coût de l'e- (c/kWh)
Gaz naturel SR	5 à 8	
Oxydation partielle des résidus	7 à 11	
Naphta SR	9,4	
Charbon	10 à 12	
Biomasse	9 à 17	
Électrolyse		
Réseau	25	4
Photovoltaïque	37 à 76	10 à 21
Solaire thermique	45 à 73	8 à 13
Éolien	30 à 46	5,4 à 8,8

Utilisation

Electricité/PAC, un couple au cœur de la problématique hydrogène

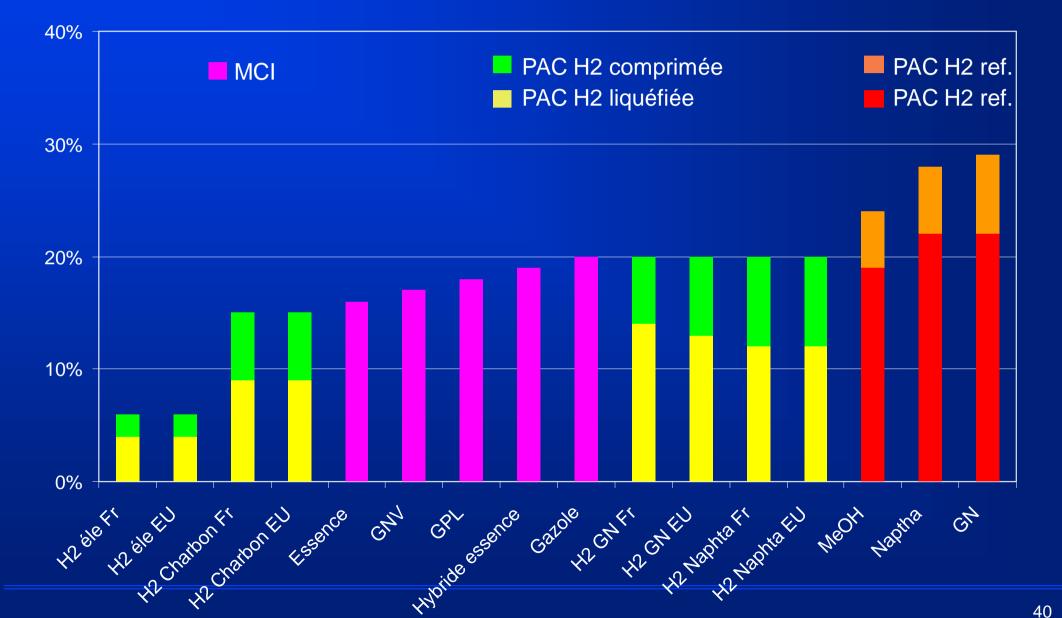
	Utilisation finale	Convertisseur
<u>Applications fixes</u> :		
Applications domestiquesApplications professionnelles	génération d'électricité co-génération	PAC MCI Turbines
<u>Applications Mobiles</u> :		
Transport	VL, PL, Trains, bateaux : génération d'électricité	
	travail mécanique	PAC
		MCI
Électroniques grand public	Téléphone portable:	
	génération d'électricité	

37



Utilisation Applications fixes : analyses de la concurrence

	Aujourd'hui		Demain			
	Cout (\$/kW)	Efficacité énergétique	Cout (\$/kW)	Efficacité énergétique		
Production décentralisé						
Micoturbines	350 - 1250	28%	300	37%		
MCI	200 - 800	32%	200-500	42%		
Moteur stirling	400	30%	200	40-45%		
Petite turbines à gaz	300-870	35%	300	45%		
Moteur diesel	200-250	40%	200	48%		
PEMFC	3000	30-40%	60	40-50%		
SOFC	-	-	1300	60-70%		
Photovoltaïques	7000	-	3000-5000	-		
Eolien	940-1400	-	760-1000	-		
Production centralisé						
Turbines à gaz	<200	35%	<200	45%		
cc	500	57%	350	62-63%		
charbon pulvérisé	1300	43%	900	46-50%		
Charbon lit fluidisé	1800	42%	1200	41-47%		



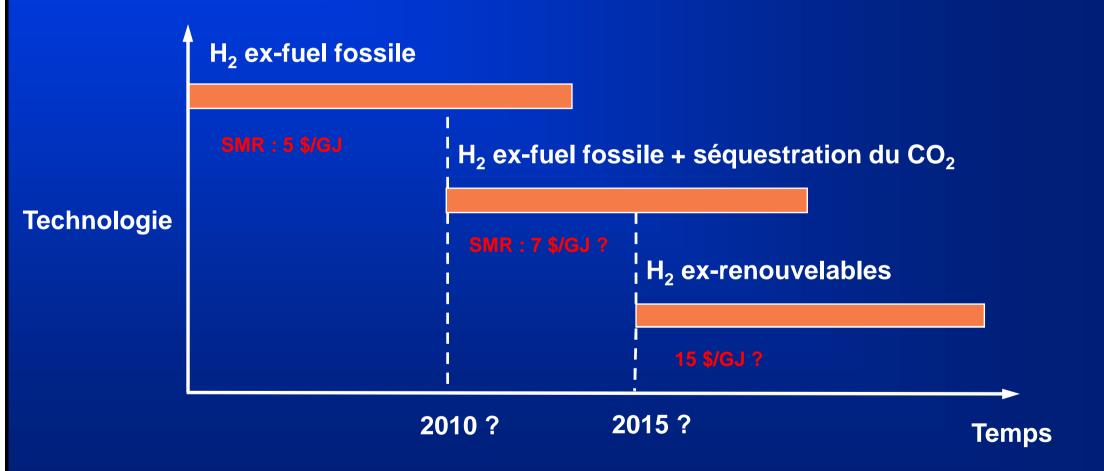
Analyse des filières énergétiques "du puits à la roue" Résultats : émission de CO2 en g/km

Analyse des filières énergétiques "du puits à la roue" Résultats : rendement énergétique

Conclusion L'hydrogène, vecteur énergétique du futur ?

Principales qualités:

- Un vecteur respectueux de l'environnement :
 - certaines filières hydrogène ont de bons rendements ;
 - certaines filières hydrogène rejettent peu de polluants à l'atmosphère;
 - il est un intermédiaire important dans le cadre de la mise en place de filières énergétiques décarbonées.


Principaux défauts :

- Vecteur énergétique dont le coût de production peut être élevé
- Gaz très volatile : difficulté de distribution et de stockage notamment
- Inexistence des structures de production et de distribution de masse
- Dépendant du développement des PAC (technique et coût)

Conclusion L'hydrogène, vecteur énergétique du futur ?

Scénario de pénétration de l'H₂ ex-renouvelable : A quel échéance ?

